intramolecular nucleophilic displacement of some group (likely pyrophosphate) in the α orientation at $\mathrm{C}(10)$. This would invert the configuration at $\mathrm{C}(10)$ and would normally place the methyl group in the α configuration. However, if one examines this system carefully, it is seen that although inversion occurs, the formation of the highly strained cyclopropane ring causes a pseudo-inversion such that the methyl group is still in the β orientation. The α orientation of the $C(5)$ hydroxyl group of axivalin is in accord with other evidence (Battersby, 1972) that biological hydroxylations occur with retention of configuration.

This work was supported in part by grants from the United States Public Health Service (GM-05814 and CA-1312).

References

Battersby, A. R. (1972). Acc. Chem. Res. 5, 148-154.
Herz, W., Sudarsanam, V. \& Schmid, J. J. (1966). J. Org. Chem. 31, 3232-3236.
International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.

Karle, J. \& Hauptman, H. (1956). Acta Cryst. 9, 635-651.
Karplus, M. (1963). J. Amer. Chem. Soc. 85, 2870-2871.
Parker, W., Roberts, J. S. \& Ramage, R. (1967). Quart. Rev. 21, 331-363.
Snatzke, G. (1969). Riechstoffe, Aromen und Körperpflegem. 19, 98-104.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The X-RAY System of Crystallographic Programs. Computer Science Center, Univ. of Maryland.
Stöcklin, W., Waddell, T. G. \& Geissman, T. A. (1970). Tetrahedron, 26, 2397-2409.

The Crystal Structure of Tsumcorite, a New Mineral from the Tsumeb Mine, S.W. Africa

By Ekkehart Tillmanns and Walter Gebert
Institut für Mineralogie der Ruhr-Universität Bochum, D-463 Bochum, Germany (BRD)

(Received 23 July 1973; accepted 24 July 1973)
Tsumcorite, $\mathrm{Pb}\left(\mathrm{Zn}, \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}\right)_{2}\left(\mathrm{OH}, \mathrm{OH}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}$, crystallizes in the monoclinic space group $\mathrm{C} 2 / m$ with $a=9.124$ (3), $b=6.329$ (2), $c=7.577$ (2) $\AA, \beta=115^{\circ} 17$ (2),$Z=2$. The crystal structure has been determined from X-ray diffractometer data by Patterson and Fourier methods and refined to $R=0.03$ for 594 observed $F_{h k l}$. It consists of layers of composition $\left[(\mathrm{Zn}, \mathrm{Fe})\left(\mathrm{OH}, \mathrm{OH}_{2}\right) \mathrm{AsO}_{4}\right]^{-}$parallel to the a, b plane which are formed by the coordination octahedra around $(\mathrm{Zn}, \mathrm{Fe})$ and the AsO_{4} tetrahedra via shared edges and corners. The Pb atoms occupy special positions with site symmetry $\overline{1}$ between these layers. There are six short $\mathrm{Pb}-\mathrm{O}$ bonds of $2 \cdot 591 \AA(2 \times)$ and $2 \cdot 597 \AA(4 \times)$ and two weaker bonds of 2.955 \AA. Iron and zinc atoms replace each other in one crystallographic site with a mean (Zn, Fe)-O distance in the $(\mathrm{Zn}, \mathrm{Fe})\left(\mathrm{OH}, \mathrm{OH}_{2}\right)_{2} \mathrm{O}_{4}$ coordination octahedron of $2.065 \AA$. Crystal chemical and analytical evidence strongly suggests that the iron in tsumcorite is mostly Fe^{3+}.

Introduction

The mineral tsumcorite from the Tsumeb mine, S.W. Africa, was first described by Geier, Kautz \& Müller (1971) who proposed the chemical formula
$\mathrm{PbZnFe}\left(\mathrm{AsO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ based on several chemical analyses. Crystal data for tsumcorite are reported by Geier, Kautz \& Müller (1971) as $a=9 \cdot 131, b=6 \cdot 326, c=7.583$ $\AA, \beta=115 \cdot 3^{\circ}, Z=2$, space group $C 2 / m$. Tsumcorite occurs in crusts several mm thick in the second (deep) oxidation zone of the Tsumeb mine, with other $\mathrm{Pb}-\mathrm{Fe}-$ arsenate and sulphate minerals such as beudantite, $\mathrm{PbFe}_{3}\left[(\mathrm{OH})_{6} / \mathrm{SO}_{4} / \mathrm{AsO}_{4}\right]$, anglesite, PbSO_{4}, mimetite, $\mathrm{Pb}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ and carminite, $\mathrm{PbFe}_{2}\left[(\mathrm{OH}) \mathrm{AsO}_{4}\right]_{2}$. After registration of the mineral with the Commission on New Minerals and Mineral Names, IMA, other so-far unidentified or wrongly classified specimens in the British Museum, London, were identified as tsumcorite. One of these (specimen Nr. MB 1929,93) which
comes from the first oxidation zone of the Tsumeb mine has been used for this investigation.
It is surprising that all the iron in tsumcorite is reported to be in the divalent state, while nearly all other minerals found together with tsumcorite in the oxidation zones of the Tsumeb mine contain only trivalent iron. In addition, the cell content of two formula units per cell requires that the two water molecules occupy one of the twofold positions in space group $C 2 / m$ which all have the site symmetry $\overline{1}$. This site symmetry however does not correspond to the geometry of the water molecule unless the hydrogen atoms are disordered. The crystal structure was determined in order to obtain definite information about the chemical formula and crystal chemistry of tsumcorite.
As has been pointed out by Geier, Kautz \& Müller (1971) the lattice constants of tsumcorite are very similar to those of brackebuschite, $\mathrm{Pb}_{2}(\mathrm{Mn}, \mathrm{Fe})$ $\left(\mathrm{VO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, which crystallizes in space group $P 2_{1} / m$
with $a=7.68, b=6.15, c=8.88 \quad \AA$ and $\beta=111^{\circ} 50^{\prime}$. (Donaldson \& Barnes, 1955). A refinement of the crystal structure of brackebuschite is in progress and a comparison of the two structures will be reported later.

Experimental

A sample of tsumcorite (Nr. MB 1929,93) given to the Institute of Mineralogy, Karlsruhe, by Dr P. G. Embrey, British Museum, London, was put at our disposal by Dr K. Kautz, Essen. Most crystals of the specimen were twinned but a few single crystals could be selected from the sample. The crystal used for data collection was wedge-shaped and did not show well developed faces. Crystal data and the details of data collection are listed in Table 1. The lattice constants are based on the refinement of the setting of 12 high-angle reflexions which had been centred on an automatic 4 -circle diffractometer. They are in good agreement with the values found by Gcier, Kautz \& Müller (1971). The systematic extinctions ($h k l$ only present with $h+k=2 n$) are consistent with space group $C 2 / m$. Intensities were collected on the diffractometer with Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$, graphite monochromator), $\theta-2 \theta$ stepscan mode with 70 steps of 0.01° and 2 s counting time per step. The background intensity was measured for 20 s at each end of the scanning interval. The intensities were corrected for Lorentz-polarization and absorption effects and the individual values of the squared structure amplitudes and their standard deviations were averaged for equivalent reflexions. For the absorption correction, the irregular shape of the crystal was approximated by five boundary planes. Their in-

Table 1. Crystal data, details of data collection and R values

a	$9.124(3) \AA$
b	$6.329(2)$
c	$7.577(2)$
β	$115^{\circ} 17(2)^{\prime}$
V	$395.5(4) \AA^{3}$
Z	2
Space group	$C 2 / \mathrm{m}$
D_{x}	$5.39 \mathrm{~g} \mathrm{~cm}^{-3}$
F.W.	641.3
$\mu($ Mo $K \alpha)$	$337.0 \mathrm{~cm}^{-1}$
Number of non-unique $I_{h k l}$	2804
Number of unique $I_{h k l}$	747
Number of $I_{h k l}=0$	153
$2 \theta_{\text {max }}$	64°
$R_{1}=\sum\| \| F_{o}\left\|-\left\|F_{c}\right\|\right\| / \sum_{l}\left\|F_{o}\right\|$	0.030
$R_{2}=\left[\sum w\left(\left\|F_{o}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}$	0.036
R_{1} (including $\left.F_{h k l}=0\right)$	0.070

Boundary planes and their distances from an arbitrary origin on the surface of the crystal (mm)

h	k	l	d
0	$\overline{1}$	0	0.0
0	1	0	0.155
4	0	$\overline{1}$	0.0
$\frac{2}{2}$	0	$\frac{1}{1}$	0.021
0	0	1	0.0
Crystal volume	$9 \cdot 10^{-4} \mathrm{~mm}^{3}$		

dices and distances from an arbitrary origin on the surface of the crystal are given in Table 1. The transmission factors were in the range $0.21-0.69$. Standard deviations $\sigma(I)$ were calculated according to the formula

$$
\sigma(I)=\left\{\mathrm{CT}+\left(t_{c} / 2 t_{b}\right)^{2}\left(B_{1}+B_{2}\right)+\left(c_{1} I\right)^{2}+\left[c_{2}\left(I_{A}-I\right]^{2}\right\}^{1 / 2}\right.
$$

Table 2. Tsumcorite, observed and calculated structure factors $(\times 2 \cdot 9)$

(Corfield, Doedens \& Ibers, 1967; Coppens, Leiserowitz \& Rabinovich, 1965), where CT is the total integrated count in time t_{c}, B_{1} and B_{2} are the bacl:ground counts each in time t_{b}, c_{1} and c_{2} are empirical constants which were set to 0.03 and 0.008 respectively. I_{A} is the intensity corrected for absorption and I the intensity for which

$$
I=\mathrm{CT}-\left(t_{c} / 2 t_{b}\right)\left(B_{1}+B_{2}\right)
$$

Any intensity measured to be less than twice its standard deviation was considered to be zero. The following computer programs were used in the course of the work:

1. The Fourier program SFS by Neukäter \& Biedl (unpublished).
2. The least-squares program ORFLS by Busing, Martin \& Levy (1962), modified by W. C. Hamilton \& J. A. Ibers.
3. The data reduction program DATAPH by Coppens, Leiserowitz \& Rabinovich (1965).
4. The program SADIAN 69 for the calculation of interatomic distances and angles by Baur \& Wenninger (unpublished).
5. The crystallographic function and error program ORFFE by Busing, Martin \& Levy (1964).

All programs were modified for use at the Telefunken TR 440 computer of the Ruhr-Universität Bochum.
Patterson and Fourier methods were used to solve the structure. After interpretation of the Patterson synthesis the lead atom was placed in special position $2(a)$ of space group $C 2 / m$ (site symmetry $\overline{\mathrm{I}}$). The iron and zinc atoms were assumed to occupy statistically the special position $4(f)$ (ZF-site). Two cycles of struc-ture-factor calculations and Fourier syntheses gave a complete model of the structure. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1962). For the ZF-site the scattering factor curve ($0.5 f_{\mathrm{Z}_{\mathrm{n}}}+0.5 f_{\mathrm{Fe}}$) was used. The function minimized in refinement was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. The weight w was defined as $1 / \sigma^{2}\left(F_{o}\right)$. Unobserved reflexions were given zero weight. Four cycles of full-matrix least-squares refinement with anisotropic temperature factors gave an R of 0.03 . In the final difference synthesis the strongest maxima and minima were $\pm 1.3 \mathrm{e}$ \AA^{-3} in the vicinity of the lead atom. Hydrogen atoms could not be located.

The observed and calculated structure amplitudes are listed in Table 2. Table 3 contains the final positional and thermal pardmeters and Table 4 shows the magnitude of the anisotropic thermal motion of all atoms.

Table 4. Root-mean-square thermal displacements along principal axes

	Axis 1	Axis 2	Axis 3
	.		
	$0.124(1) \AA$	$0.149(1) \AA$	$0.168(1) \AA$
Pb	$0.071(4)$	$0.089(2)$	$0.102(3)$
As	$0.082(3)$	$0.083(3)$	$0.104(3)$
$(\mathrm{Zn}, \mathrm{Fe})$	$0.071(24)$	$0.121(13)$	$0.128(15)$
$\mathrm{O}(W 1)$	$0.078(22)$	$0.118(13)$	$0.137(14)$
$\mathrm{O}(2)$	$0.092(12)$	$0.100(12)$	$0.128(10)$
$\mathrm{O}(3)$	$0.080(18)$	$0.146(16)$	$0.201(13)$
$\mathrm{O}(4)$			

Description and discussion of the crystal structure

The prominent feature of the crystal structure is infinite chains of edge-sharing $(\mathrm{Zn}, \mathrm{Fe}) \mathrm{O}_{4}\left(\mathrm{OH}, \mathrm{OH}_{2}\right)_{2}$ octahedra parallel to b (Fig. 1). Fig. 2 shows a projection of the structure parallel to the direction of the chains and illustrates the connexion between parallel chains. In the direction of a, parallel chains are connected by two AsO_{4} tetrahedra via common corners to form layers of composition $\left[(\mathrm{Zn}, \mathrm{Fe})\left(\mathrm{OH}, \mathrm{OH}_{2}\right) \mathrm{AsO}_{4}\right]^{-}$ parallel to the a, b plane. The lead atoms are located between these layers. The only other connexion between two individual layers is the hydrogen bond donated by $\mathrm{O}(W 1)$ to $\mathrm{O}(4)$ of the AsO_{4} tetrahedral group. Interatomic distances and angles are given in Table 5.

The lead atom is coordinated by eight oxygen atoms with six $\mathrm{Pb}-\mathrm{O}$ distances of almost equal length ($2 \times$ $2.591 \AA$ and $4 \times 2.597 \AA$) and two longer $\mathrm{Pb}-\mathrm{O}$ bonds of $2.955 \AA$. The PbO_{8} coordination polyhedron can be described as a distorted tetragonal prism or as an octahedron formed by six oxygen atoms [$2 \times \mathrm{O}(4)$ and $4 \times O(3)$ at distances of $2.591 \AA$ and $2.597 \AA$] with two additional coordinating oxygen atoms [$2 \times \mathrm{O}(2)$] centred above two opposite octahedral faces (cf. Fig. 2). The lead atom is located on a centre of symmetry; therefore, in this crystal structure, there is no tendency to the one-sided coordination which is often found for divalent lead because of its lone pair of electrons in

Table 3. Fractional atomic coordinates and vibrational parameters $\left(\AA^{2}\right)$ with the significant figures of the estimated standard deviations in parentheses
The definition of the Debye-Waller temperature factor is $\exp \left(-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B_{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right)$.

	x / a	y / b	z / c	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Pb	0	0	0	1.83 (2)	1.73 (4)	1.24 (2)	0	$0 \cdot 34$ (2)	0
As	$0 \cdot 9179$ (1)	$0 \cdot 5$	$0 \cdot 2155$ (1)	$0 \cdot 52$ (4)	$0 \cdot 80$ (5)	0.57 (4)	0	$0 \cdot 32$ (2)	0
(Zn, Fe)	0.25	$0 \cdot 25$	$0 \cdot 5$	$0 \cdot 60$ (4)	0.53 (5)	$0 \cdot 62$ (4)	$0 \cdot 00$ (2)	$0 \cdot 14$ (3)	$0 \cdot 00$ (2)
$\mathrm{O}(W 1)$	$0 \cdot 3405$ (9)	$0 \cdot 5$	$0 \cdot 4066$ (9)	$0 \cdot 6$ (2)	$1 \cdot 3$ (3)	$1 \cdot 1$ (2)	0	$0 \cdot 6$ (2)	0
$\mathrm{O}(2)$	$0 \cdot 3104$ (8)	$0 \cdot 0$	$0 \cdot 3545$ (9)	$0 \cdot 7$ (2)	$1 \cdot 5$ (3)	$1 \cdot 1$ (2)	0	$0 \cdot 6$ (2)	0
$\mathrm{O}(3)$	$0 \cdot 0348$ (6)	$0 \cdot 2808$ (8)	$0 \cdot 2650$ (6)	$0 \cdot 8$ (1)	$0 \cdot 8$ (2)	0.9 (2)	$0 \cdot 0$ (2)	$0 \cdot 2$ (2)	$-0 \cdot 2(2)$
$\mathrm{O}(4)$	$0 \cdot 2215$ (9)	$0 \cdot 5$	$0 \cdot 0147$ (9)	$1 \cdot 0$ (2)	$3 \cdot 2$ (4)	$0 \cdot 7$ (3)	0	$-0 \cdot 1(2)$	0

Fig. 1. Tsumcorite, projection parallel to [001]. The central cations of the coordination polyhedra are identified, and their height is given in fractional coordinates. The ZF -position is statistically occupied by Fe and Zn .

Fig. 2. Tsumcorite, projection parallel to [010]. Hydrogen bonds are marked by arrows pointing to the acceptor atom. The height of atoms is given in fractional coordinates.

Table 5. Interatomic distances and angles
Standard deviations are $0.006 \AA$ for $\mathrm{Pb}-\mathrm{O}$, $\mathrm{As}-\mathrm{O}$ and (Zn, Fe)O bonds and $0.009 \AA$ for $\mathrm{O}-\mathrm{O}$ bonds. Bond angles have a standard deviation of 0.3°. For each coordination polyhedron AX_{n} the $\mathrm{A}-\mathrm{X}$ distances are given first, followed by the $\mathrm{X}-\mathrm{A}-\mathrm{X}$ angles and the $\mathrm{X}-\mathrm{X}$ distances.

(a) Coordination around Pb			
$\mathrm{Pb}-\mathrm{O}(4)$		$2.591 \AA$	(2×)
$\mathrm{Pb}-\mathrm{O}(3)$		2.597	$(4 \times$)
$\mathrm{Pb}-\mathrm{O}(2)$		2.955	(2×)
Mean		$2 \cdot 685$	
$\mathrm{O}(4)-\mathrm{O}(3)$	$76.4{ }^{\circ}$	$3 \cdot 208$	$(4 \times$)
$\mathrm{O}(3)-\mathrm{O}(2)$	$62 \cdot 9$	$2 \cdot 913$	$(4 \times$)
$\mathrm{O}(4)-\mathrm{O}(3)$	103.6	4.077	$(4 \times$)
$\mathrm{O}(3)-\mathrm{O}(2)$	$117 \cdot 1$	$4 \cdot 741$	$(4 \times$)
$\mathrm{O}(4)-\mathrm{O}(2)$	122.5	$4 \cdot 866$	$(2 \times$)
$\mathrm{O}(4)-\mathrm{O}(2)$	57.5	$2 \cdot 687$	$(2 \times$)
$\mathrm{O}(3)-\mathrm{O}(3)$	86.4	3.555	$(2 \times$)
$\mathrm{O}(3)-\mathrm{O}(3)$	93.6	3.787	$(2 \times$)
$\mathrm{O}(3)-\mathrm{O}(3)$	$180 \cdot 0$	$5 \cdot 194$	$(2 \times$)
$\mathrm{O}(4)-\mathrm{O}(4)$	$180 \cdot 0$	5-182	
$\mathrm{O}(2)-\mathrm{O}(2)$	$180 \cdot 0$	$5 \cdot 911$	

(b) Coordination around As

As-O(4)		$1.663 \AA$	
As-O(3)		1.691	$(2 \times)$
As-O(2)		1.719	
Mean		1.691	
O(4)-O(3)	$111 \cdot 1^{\circ}$	$2.765 \AA$	$(2 \times)$
O(4)-O(2)	105.2	2.686	
O(3)-O(3)	110.2	2.774	
O(3)-O(2)	109.6	2.786	$(2 \times)$

(c) Coordination around the ZF -site (Zn, Fe)			
ZF-O(3)		2.019 Å	($2 \times$)
ZF-O(${ }^{\text {1 }}$ 1)		2.046	(2×)
ZF-O(2)		$2 \cdot 131$	(2x)
Mean		2.065	
$\mathrm{O}(3)-\mathrm{O}(3)$	180.0°	4.038	
$\mathrm{O}(3)-\mathrm{O}\left(W_{1}\right)$	89.8	2.868	($2 \times$)
$\mathrm{O}(3)-\mathrm{O}(W 1)$	$90 \cdot 2$	$2 \cdot 881$	(2x)
$\mathrm{O}(3)-\mathrm{O}(2)$	$89 \cdot 1$	2.913	$(2 \times$)
$\mathrm{O}(3)-\mathrm{O}(2)$	$90 \cdot 9$	2.958	(2×)
$\mathrm{O}(W 1)-\mathrm{O}(W 1)$	$180 \cdot 0$	4.092	
$\mathrm{O}(2)-\mathrm{O}(2)$	$180 \cdot 0$	$4 \cdot 262$	
$\mathrm{O}(W 1)-\mathbf{O}(2)$	$80 \cdot 6$	2.702	($2 \times$)
$\mathrm{O}(W 1)-\mathrm{O}(2)$	99.4	3.186	($2 \times$)
(d) Coordination around $\mathrm{O}\left(W_{1}\right)$			
$\mathrm{O}(W 1)-\mathrm{ZF}$		2.046 A	($2 \times$)
$\mathrm{O}(W 1)-\mathrm{O}(W 1)$		2.636	
$\mathrm{O}\left(W_{1}\right)-\mathrm{O}(4)$		2.690	
ZF--ZF	101.3°	$3 \cdot 165$	
	$109 \cdot 3$	$3 \cdot 834$	($2 \times$)
$\mathrm{ZF}-\mathrm{O}(4)$	$110 \cdot 4$	$3 \cdot 908$	($2 \times$)
$\mathrm{O}(W 1)-\mathrm{O}(4)$	$115 \cdot 1$	4.496	

the $6 s$ orbital. The AsO_{4} tetrahedra share three of their four corners with the coordination octahedra around (Zn, Fe) and the PbO_{8} polyhedra. The fourth oxygen atom is coordinated only to As and Pb and in addition receives a hydrogen bond from $\mathrm{O}(W 1)$.

In the first stages of the refinement the ZF position was assumed to be statistically occupied by zinc and divalent iron. This assumption however was not supported by the results of the refinement. As can be seen from Table 5, the mean (Zn, Fe)-O distance is $2 \cdot 065 \AA$. According to Shannon \& Prewitt (1969) the effective

Fig. 3. Bonding around $\mathrm{O}(W 1)$.
ionic radii for Fe^{2+} and Zn are almost equal at 0.77 and $0.75 \AA$ respectively, while the ionic radius of Fe^{3+} is $0.645 \AA$. The mean value of 70 individual $\mathrm{Fe}^{2+}-\mathrm{O}$ bonds is $2 \cdot 138 \AA$, the mean $\mathrm{Fe}^{3+}-\mathrm{O}$ distance of 69 individual bonds is $2.011 \AA$ (Baur, 1970). The mean $\mathrm{Zn}-\mathrm{O}$ distance in seven well-determined crystal structures which contain zinc in octahedral coordination is $2 \cdot 112 \AA$ (Baur, 1973, private communication). Thus the mean (Zn, Fe)-O distance of $2.065 \AA$ found in tsumcorite indicates that iron must be predominantly in the trivalent state.

A wet chemical determination of the FeO content of tsumcorite gave $2.6 \mathrm{wt} . \% \mathrm{FeO}$ which means that about one quarter of the total iron content is Fe^{2+} and three quarters are Fe^{2+}. The determination was made by means of a photometric micromethod developed by Wilson (1960) and modified by Langer \& Nickel (1973). Mimetite, $\mathrm{Pb}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$ was used for a blank determination.

Based on an occupancy of the ZF-site of $50 \% \mathrm{Zn}$, $12 \% \mathrm{Fe}^{2+}$ and $38 \% \mathrm{Fe}^{3+}$ the theoretical mean $(\mathrm{Zn}, \mathrm{Fe})-\mathrm{O}$ distance is $2.076 \AA$ which is close to the observed distance of $2.065 \AA$.

While a number of compounds are known in which Zn and Fe^{2+} replace each other ($c f$. Brehler 1969), the statistical occupation of one crystallographic site by Zn and Fe^{3+} is rather unusual. A similar case has been found in $\mathrm{Ba}_{2} \mathrm{Zn}_{2} \mathrm{Fe}_{12} \mathrm{O}_{22}$ (Townes \& Fang, 1970), where one octahedral site has the population $\mathrm{Fe}_{0.6}^{3+} \mathrm{Zn}_{1.4}$ with a mean (Zn, Fe)-O distance of $2.088 \AA$.

With trivalent instead of divalent iron ions in tsumcorite it has to be assumed that the $\mathrm{O}(W 1)$ position is statistically occupied by OH and $\mathrm{H}_{2} \mathrm{O}$ in order to retain the electrostatic charge balance of the chemical formula. This is also borne out by the fact that there is a short oxygen-oxygen contact $\left[\mathrm{O}\left(W_{1}\right)-\mathrm{O}\left(W_{1}\right)\right]$ of $2.636 \AA$ across a centre of symmetry, which is most probably due to a hydrogen bond. $\mathrm{O}(W 1)$ is tetrahe-

Table 6. Electrostatic bond strengths $p(\mathrm{O})$ in tsumcorite

	Pb	$(\mathrm{Zn}, \mathrm{Fe})$	As	$\mathrm{H}(D)$	$\mathrm{H}(A)$	$\sum=p(\mathrm{O})$
$\mathrm{O}(W 1)$	-	2×0.396	-	1.5×0.83	0.5×0.17	2.12
$\mathrm{O}(2)$	0.25	2×0.396	1.25	-	-	2.29
$\mathrm{O}(3)$	0.25	0.396	1.25	-	-	1.90
$\mathrm{O}(4)$	0.25	-	1.25	-	0.17	1.67

drally surrounded by two (Zn, Fe) atoms, by oxygen atom $\mathrm{O}(4)$ of the AsO_{4} group and by the symmetrically equivalent $\mathrm{O}(W 1)$ molecule (see Fig. 3). The $\mathrm{O}\left(W_{1}\right)-$ $\mathrm{O}(4)$ distance is $2 \cdot 690 \AA$, a distance which is consistent with a hydrogen bond. The next shortest distance between the $\mathrm{O}(W \mathrm{I})$ molecule and another oxygen atom, which does not belong to the same coordination octahedron around (Zn, Fe), is $3.013 \AA\left[\mathrm{O}\left(W_{1}\right)-\mathrm{O}(3)\right]$. Although the hydrogen atoms could not be located in the difference synthesis because of the presence of the heavy lead atoms the most likely interpretation of the bonding situation around $\mathrm{O}(W 1)$ is that the $\mathrm{O}(W 1)$ position is statistically occupied by OH and $\mathrm{H}_{2} \mathrm{O}$. One of the two symmetrically equivalent $\mathrm{O}(W 1)$ positions is occupied by a water molecule which donates one hydrogen bond to $\mathrm{O}(4)$ and another to the equivalent $\mathrm{O}(W 1)$ position which is then occupied by OH and also donates one hydrogen bond to a different $\mathrm{O}(4)$ atom.

The electrostatic bond-strength sums $p(\mathrm{O})$ (Pauling 1960; Baur 1970) received by each oxygen atom from the surrounding cations are given in Table 6. They correspond well to the observed interatomic distances with respect to the correlations between interatomic distances and bond-strength sums p (Baur, 1970). In view of the crystal chemical and analytical evidence tsumcorite should properly be formulated as $\mathrm{Pb}\left(\mathrm{Zn}, \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+}\right)_{2}\left(\mathrm{OH}, \mathrm{OH}_{2}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}$.

We wish to thank Dr K. Kautz, Essen, who suggested the crystal structure determination, for a specimen of tsumcorite. Thanks are also due to Professor K. Langer and Mr S. Nickel, Bochum, for their deter-
mination of the FeO content and Professors W. H. Baur, Chicago, and V. Kupčik, Göttingen, for useful discussions. Computing time was provided by the Computing Centre of the Ruhr-Universität Bochum.

References

Baur, W. H. (1970). Trans. Amer. Cryst. Assoc. 6, 129155.

Brehler, B. (1969). Zinc-Crystal Chemistry. Handbook of Geochemistry, Vol. II, 1. Heidelberg: Springer-Verlag.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-204.
Donaldson, D. M. \& Barnes, W. H. (1955). Amer. Min. 40, 597-613.
Geier, B. H., Kautz, K. \& Müller, G. (1971). Neues Jb. Miner. Mh. 1971, 305-309.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Langer, K. \& Nickel, S. (1973). In preparation.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
Townes, W. D. \& Fang, J. H. (1970). Z. Kristallogr. 131, 196-205.
Wilson, A. D. (1960). Analyst, 85, 823-827.

